Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
I1(*2(x, y)) -> I1(x)
*12(x, *2(y, z)) -> *12(x, y)
*12(*2(i1(x), k2(y, z)), x) -> *12(*2(i1(x), z), x)
*12(*2(i1(x), k2(y, z)), x) -> *12(i1(x), z)
I1(*2(x, y)) -> *12(i1(y), i1(x))
*12(*2(i1(x), k2(y, z)), x) -> *12(i1(x), y)
*12(*2(i1(x), k2(y, z)), x) -> K2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
*12(*2(i1(x), k2(y, z)), x) -> *12(*2(i1(x), y), x)
I1(*2(x, y)) -> I1(y)
*12(x, *2(y, z)) -> *12(*2(x, y), z)
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
I1(*2(x, y)) -> I1(x)
*12(x, *2(y, z)) -> *12(x, y)
*12(*2(i1(x), k2(y, z)), x) -> *12(*2(i1(x), z), x)
*12(*2(i1(x), k2(y, z)), x) -> *12(i1(x), z)
I1(*2(x, y)) -> *12(i1(y), i1(x))
*12(*2(i1(x), k2(y, z)), x) -> *12(i1(x), y)
*12(*2(i1(x), k2(y, z)), x) -> K2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
*12(*2(i1(x), k2(y, z)), x) -> *12(*2(i1(x), y), x)
I1(*2(x, y)) -> I1(y)
*12(x, *2(y, z)) -> *12(*2(x, y), z)
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
*12(x, *2(y, z)) -> *12(x, y)
*12(*2(i1(x), k2(y, z)), x) -> *12(*2(i1(x), z), x)
*12(*2(i1(x), k2(y, z)), x) -> *12(i1(x), z)
*12(*2(i1(x), k2(y, z)), x) -> *12(i1(x), y)
*12(*2(i1(x), k2(y, z)), x) -> *12(*2(i1(x), y), x)
*12(x, *2(y, z)) -> *12(*2(x, y), z)
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
I1(*2(x, y)) -> I1(x)
I1(*2(x, y)) -> I1(y)
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
I1(*2(x, y)) -> I1(x)
I1(*2(x, y)) -> I1(y)
Used argument filtering: I1(x1) = x1
*2(x1, x2) = *2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
*2(x, 1) -> x
*2(1, y) -> y
*2(i1(x), x) -> 1
*2(x, i1(x)) -> 1
*2(x, *2(y, z)) -> *2(*2(x, y), z)
i1(1) -> 1
*2(*2(x, y), i1(y)) -> x
*2(*2(x, i1(y)), y) -> x
i1(i1(x)) -> x
i1(*2(x, y)) -> *2(i1(y), i1(x))
k2(x, 1) -> 1
k2(x, x) -> 1
*2(k2(x, y), k2(y, x)) -> 1
*2(*2(i1(x), k2(y, z)), x) -> k2(*2(*2(i1(x), y), x), *2(*2(i1(x), z), x))
k2(*2(x, i1(y)), *2(y, i1(x))) -> 1
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.